52 research outputs found

    Bringing together approaches to reporting on within species genetic diversity

    Get PDF
    1. Genetic diversity is one of the three main levels of biodiversity recognised in the Convention on Biological Diversity (CBD). Fundamental for species adaptation to environmental change, genetic diversity is nonetheless under-reported within global and national indicators. When it is reported, the focus is often narrow and confined to domesticated or other commercial species. 2. Several approaches have recently been developed to address this shortfall in reporting on genetic diversity of wild species. While multiplicity of approaches is helpful in any development process, it can also lead to confusion among policy makers and heighten a perception that conservation genetics is too abstract to be of use to organisations and governments. 3. As the developers of five of the different approaches, we have come together to explain how various approaches relate to each other and propose a scorecard, as a unifying reporting mechanism for genetic diversity. 4. Policy implications. We believe the proposed combined approach captures the strengths of its components and is practical for all nations and subnational governments. It is scalable and can be used to evaluate species conservation projects as well as genetic conservation projects.ISSN:0021-8901ISSN:1365-266

    Haplotype inference in crossbred populations without pedigree information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current methods for haplotype inference without pedigree information assume random mating populations. In animal and plant breeding, however, mating is often not random. A particular form of nonrandom mating occurs when parental individuals of opposite sex originate from distinct populations. In animal breeding this is called <it>crossbreeding </it>and <it>hybridization </it>in plant breeding. In these situations, association between marker and putative gene alleles might differ between the founding populations and origin of alleles should be accounted for in studies which estimate breeding values with marker data. The sequence of alleles from one parent constitutes one haplotype of an individual. Haplotypes thus reveal allele origin in data of crossbred individuals.</p> <p>Results</p> <p>We introduce a new method for haplotype inference without pedigree that allows nonrandom mating and that can use genotype data of the parental populations and of a crossbred population. The aim of the method is to estimate line origin of alleles. The method has a Bayesian set up with a Dirichlet Process as prior for the haplotypes in the two parental populations. The basic idea is that only a subset of the complete set of possible haplotypes is present in the population.</p> <p>Conclusion</p> <p>Line origin of approximately 95% of the alleles at heterozygous sites was assessed correctly in both simulated and real data. Comparing accuracy of haplotype frequencies inferred with the new algorithm to the accuracy of haplotype frequencies inferred with PHASE, an existing algorithm for haplotype inference, showed that the DP algorithm outperformed PHASE in situations of crossbreeding and that PHASE performed better in situations of random mating.</p

    Splitting or lumping? A conservation dilemma exemplified by the critically endangered Dama Gazelle (Nanger dama)

    Get PDF
    Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions

    Trading or coercion? Variation in male mating strategies between two communities of East African chimpanzees

    Get PDF
    Across taxa, males employ a variety of mating strategies, including sexual coercion and the provision, or trading, of resources. Biological Market theory (BMT) predicts that trading of commodities for mating opportunities should exist only when males cannot monopolise access to females and/or obtain mating by force, in situations where power differentials between males are low; both coercion and trading have been reported for chimpanzees (Pan troglodytes). Here, we investigate whether the choice of strategy depends on the variation in male power differentials, using data from two wild communities of East African chimpanzees (P.t. schweinfurthii): the structurally despotic Sonso community (Budongo, Uganda) and the structurally egalitarian M-group (Mahale, Tanzania). We found evidence of sexual coercion by male Sonso chimpanzees, and of trading—of grooming for mating—by M-group males; females traded sex for neither meat nor protection from male aggression. Our results suggest that the despotism–egalitarian axis influences strategy choice: male chimpanzees appear to pursue sexual coercion when power differentials are large and trading when power differentials are small and coercion consequently ineffective. Our findings demonstrate that trading and coercive strategies are not restricted to particular chimpanzee subspecies; instead, their occurrence is consistent with BMT predictions. Our study raises interesting, and as yet unanswered, questions regarding female chimpanzees’ willingness to trade sex for grooming, if doing so represents a compromise to their fundamentally promiscuous mating strategy. It highlights the importance of within-species cross-group comparisons and the need for further study of the relationship between mating strategy and dominance steepness

    The landscape of tolerated genetic variation in humans and primates

    Get PDF

    The time scale of recombination rate evolution in great apes

    Get PDF
    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- And between-species genome-wide recombination rate variation in several close relatives

    A global catalog of whole-genome diversity from 233 primate species.

    Get PDF
    The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research

    The landscape of tolerated genetic variation in humans and primates.

    Get PDF
    Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases

    The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind’s future?

    Get PDF

    No evidence that maximum fundamental frequency reflects selection for signal diminution in bonobos

    Get PDF
    Acoustic allometry consists of looking at how an organism’s body size scales with the characteristics of its vocalizations. A typical finding based on this framework is that across mammals body size is reflected in the fundamental frequency (fo) of vocalizations, whereby lower fo indicates larger body size [1]. This relationship holds owing to the fact that vocal fold length generally scales with body size [2]. Cross-species comparisons allow for the identification of interesting outliers from the body size–f0 regression [3]. Such cases are of particular relevance as they can provide insight into the selective forces potentially driving deviations from standard allometric principles [2]. In a recent study in Current Biology, Grawunder et al. [4] argue that selective pressure for higher f0 has led to the evolution of shorter vocal folds in bonobos than in chimpanzees. Thus, they claim, vocal fold length has evolved independently of body size in bonobos for the purposes of signal diminution (i.e., reducing the impression of body size that they advertise through their calls). However, considering both the existing literature and their own data, this conclusion does not appear to be supported for several reasons
    • …
    corecore